Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biosensors (Basel) ; 13(4)2023 Apr 19.
Article in English | MEDLINE | ID: covidwho-2297825

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an ongoing coronavirus disease (COVID-19) outbreak and a rising demand for the development of accurate, timely, and cost-effective diagnostic tests for SARS-CoV-2 as well as other viral infections in general. Currently, traditional virus screening methods such as plate culturing and real-time PCR are considered the gold standard with accurate and sensitive results. However, these methods still require sophisticated equipment, trained personnel, and a long analysis time. Alternatively, with the integration of microfluidic and biosensor technologies, microfluidic-based biosensors offer the ability to perform sample preparation and simultaneous detection of many analyses in one platform. High sensitivity, accuracy, portability, low cost, high throughput, and real-time detection can be achieved using a single platform. This review presents recent advances in microfluidic-based biosensors from many works to demonstrate the advantages of merging the two technologies for sensing viruses. Different platforms for virus detection are classified into two main sections: immunoassays and molecular assays. Moreover, available commercial sensing tests are analyzed.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Biosensing Techniques/methods , Immunoassay/methods
2.
Biosensors (Basel) ; 13(1)2022 Dec 21.
Article in English | MEDLINE | ID: covidwho-2245843

ABSTRACT

This Special Issue of Biosensors, "Microfluidic Biosensors for Point-of-Care Nucleic Acid Amplification Tests" aims to gather original research papers and comprehensive reviews detailing novel research, fabrication methods, and applications, as well as the challenges and prospects of developing microfluidics for improved biosensing and diagnostics [...].


Subject(s)
Biosensing Techniques , Microfluidics , Point-of-Care Systems , Point-of-Care Testing , Nucleic Acid Amplification Techniques
3.
Biosensors (Basel) ; 12(2)2022 Jan 27.
Article in English | MEDLINE | ID: covidwho-1700284

ABSTRACT

Pathogen detection by nucleic acid amplification proved its significance during the current coronavirus disease 2019 (COVID-19) pandemic. The emergence of recombinase polymerase amplification (RPA) has enabled nucleic acid amplification in limited-resource conditions owing to the low operating temperatures around the human body. In this study, we fabricated a wearable RPA microdevice using poly(dimethylsiloxane) (PDMS), which can form soft-but tight-contact with human skin without external support during the body-heat-based reaction process. In particular, the curing agent ratio of PDMS was tuned to improve the flexibility and adhesion of the device for better contact with human skin, as well as to temporally bond the microdevice without requiring further surface modification steps. For PDMS characterization, water contact angle measurements and tests for flexibility, stretchability, bond strength, comfortability, and bendability were conducted to confirm the surface properties of the different mixing ratios of PDMS. By using human body heat, the wearable RPA microdevices were successfully applied to amplify 210 bp from Escherichia coli O157:H7 (E. coli O157:H7) and 203 bp from the DNA plasmid SARS-CoV-2 within 23 min. The limit of detection (LOD) was approximately 500 pg/reaction for genomic DNA template (E. coli O157:H7), and 600 fg/reaction for plasmid DNA template (SARS-CoV-2), based on gel electrophoresis. The wearable RPA microdevice could have a high impact on DNA amplification in instrument-free and resource-limited settings.


Subject(s)
Body Temperature , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acids , Wearable Electronic Devices , COVID-19/diagnosis , DNA , Escherichia coli O157 , Humans , Nucleic Acid Amplification Techniques/methods , Nucleic Acids/isolation & purification , Recombinases/chemistry , Recombinases/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL